A Hybrid Differential Evolution Approach for Simultaneous SchedulingProblems in a Flexible Manufacturing Environment

نویسنده

  • M. V. Satish Kumar
چکیده

Scheduling of machines and transportation devices like Automated Guided Vehicles (AGVs) in a Flexible Manufacturing System(FMS) is a typical N-P hard problem. Even though several algorithms were employed to solve this combinatorial optimization problem, most of the work concentrated on solving the problems of machines and material handling independently. In this paper the authors have attempted to schedule both the machines and AGVs simultaneously, with makespan minimization as objective, for which Differential Evolution (DE) is applied. Operations based coding is employed to represent the solution vector, which is further modified to suit the DE application. The authors have proposed two new strategies of DE in this paper which better suits the problem. We have developed a separate heuristic for assigning the vehicles and this is integrated with the traditional DE approach. The hybridized approach is tested on a number of benchmark problems whose results outperformed those available in the literature.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A hybrid algorithm optimization approach for machine loading problem in flexible manufacturing system

The production planning problem of flexible manufacturing system (FMS) concerns with decisions that have to be made before an FMS begins to produce parts according to a given production plan during an upcoming planning horizon. The main aspect of production planning deals with machine loading problem in which selection of a subset of jobs to be manufactured and assignment of their operations to...

متن کامل

A HYBRID GENETIC ALGORITHM FOR A BI-OBJECTIVE SCHEDULING PROBLEM IN A FLEXIBLE MANUFACTURING CELL

 This paper considers a bi-objective scheduling problem in a flexible manufacturing cell (FMC) which minimizes the maximum completion time (i.e., makespan) and maximum tardiness simultaneously. A new mathematical model is considered to reflect all aspect of the manufacturing cell. This type of scheduling problem is known to be NP-hard. To cope with the complexity of such a hard problem, a genet...

متن کامل

A Hybrid Fire Fly and Differential Evolution Algorithm for Optimization of a Mixed Repairable and Non-Repairable System Reliability Problem

In this paper, a hybrid meta-heuristic approach is proposed to optimize the mathematical model of a system with mixed repairable and non-repairable components. In this system, repairable and non-repairable components are connected in series. Redundant components and preventive maintenance strategies are applied for non-repairable and repairable components, respectively. The problem is formulate...

متن کامل

Scheduling of flexible manufacturing systems using genetic algorithm: A heuristic approach

Scheduling of production in Flexible Manufacturing Systems (FMSs) has been extensively investigated over the past years and it continues to attract the interest of both academic researchers and practitioners. The generation of new and modified production schedules is becoming a necessity in today’s complex manufacturing environment. Genetic algorithms are used in this paper to obtain an initial...

متن کامل

An enhanced reliability-oriented workforce planning model for process industry using combined fuzzy goal programming and differential evolution approach

This paper draws on the “human reliability” concept as a structure for gaining insight into the maintenance workforce assessment in a process industry. Human reliability hinges on developing the reliability of humans to a threshold that guides the maintenance workforce to execute accurate decisions within the limits of resources and time allocations. This concept offers a worthwhile point of de...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012